

MARKET ENABLING INTERFACE TO UNLOCK FLEXIBILITY SOLUTIONS FOR
COST-EFFECTIVE MANAGEMENT OF SMARTER DISTRIBUTION GRIDS

Deliverable 7.3
PT - Validation and results of UMEI concept test, data
collection and Demo results assessment report

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 864334

 H2020 – LC-ES-1-2019

Page 2 of 39

Document

D7.3
PT - Validation and results of UMEI concept test, data collection and Demo
results assessment report

Dissemination level

PU Public

Author(s) Institution Contact (e-mail, phone)

Carlos Damas Silva E-REDES carlos.damassilva@e-redes.pt

Pedro Marques E-REDES carlospedro.marques@e-redes.pt

Gesa Milzer NODES AS gesa.milzer@nodesmarket.com

Gil Sampaio INESC TEC gil.s.sampaio@inesctec.pt

Louise Adam N-SIDE lad@n-side.com

Pierre Crucifix N-SIDE pcu@n-side.com

Clement Gohlke CENTRICA clement.gohlke@centrica.com

Key word Demonstration

Due Delivery Date 2023/11/30

 Date of Delivery 2023/12/29

Document
version

Date Change

0.0 2023/08/30 1st draft

1.0 2023/12/22 Version for revision

2.0 2023/12/29 Final version after revision

Reviewers email Validation
date

MITNETZ
David Brummund

david.brummund@mitnetz-
strom.de

2023/12/28

ENERGA Miroslaw

Matusewicz

miroslaw.matusewicz@energa-
operator.pl

2023/12/27

Page 3 of 39

Table of Contents

EXECUTIVE SUMMARY ... 5

1. INTRODUCTION .. 6

1.1 BACKGROUND .. 6

1.2 WP7 OBJECTIVES ... 6

1.3 THE UMEI ... 7

1.4 DATA EXCHANGE MECHANISMS FROM PREVIOUS PROJECTS .. 9

1.4.1 InteGrid .. 10

1.4.2 CoordiNet .. 11

1.4.3 INTERRFACE .. 12

1.4.4 InterFlex ... 13

2 IMPLEMENTATION OF THE UMEI ... 14

2.1 FLEXIBILITY REFERENCE PROCESS FOR THE DEMO ... 14

2.2 ACTORS AND RESPONSIBILITY MAPPING... 17

2.3 UMEI API AND HOST SELECTION ... 18

3 TECHNICAL DEPLOYMENT .. 21

3.1 TECHNOLOGICAL CHOICES AND ARCHITECTURE ... 21

3.2 AUTHENTICATION MECHANISMS.. 22

4 USAGE OF THE UMEI .. 24

4.1 USAGE STATISTICS OF THE API FOR N-SIDE (MARKET OPERATOR) ... 24

4.2 CENTRICA API USAGE (FLEXIBILITY SERVICE PROVIDER) ... 24

4.3 E-REDES API USAGE (DSO) .. 26

5 CONCLUSIONS .. 29

5.1 IMPLEMENTATION CHALLENGES AND LESSONS LEARNED ... 29

5.2 UMEI ADVANTAGES AND IMPROVEMENT OPPORTUNITIES ... 29

6 ANNEX (FROM DELIVERABLE 10.3) ... 31

6.1 UMEI API SCALABILITY AND REPLICABILITY ANALYSIS ... 31

6.1.1 Motivation and methodology .. 31

6.1.2 Results .. 33

6.1.3 Interim conclusions ... 37

7 REFERENCES ... 39

Page 4 of 39

List of Abbreviations

UMEI Universal Market Enabling Interface

API Application Programming Interface

DER Distributed Energy Resources

DG Distributed Generation

DSO Distribution System Operator

FSP Flexibility Service Provider

BRP Balancing Responsible Party

RES Renewable Energy Sources

LV Low Voltage

MV Medium Voltage

FMO Flexibility Market Operator

CRUD Create, Read, Update, Delete

TSO Transmission System Operator

GDPR General Data Protection Regulation

ICT Information and Communication Technology

CIM Common Information Model

IEC International Electrotechnical Commission

IEGSA Interoperable European Grid Services Architecture

IT Information Technology

GUI Graphical User Interface

SRA Scalability and Replicability Analysis

UC Use Case

Page 5 of 39

Executive Summary

Under the European H2020 program, the EUniversal Project has the main objective to foster the

universal access of system operators to the available flexibility, mainly provided by Distributed

Energy Resources (DER), through the interaction with new Flexibility Markets and innovative

services. With the development of solutions and services that allow the massive integration of

Distributed Generation (DG), energy storage, and the active participation of consumers, the project

aims to tailor the concept of the Universal Market Enabling Interface (UMEI). The UMEI will look to

overcome the limitations that Distribution System Operators (DSOs), experience in the use of

flexibilities, addressing the interlinking of electricity markets with active system management.

The EUniversal project aims to develop a universal approach to the use of flexibility by DSO and their

interaction with the new flexibility markets, enabled through the development of the UMEI. The UMEI

has materialized in the conceptual architecture design and the implementation of a standard,

agnostic, adaptable, and modular combination of different APIs to link DSOs and market parties with

flexibility market platforms, in coordination with other flexibility users. This approach allows

distributed communication without the need for a central hub.

The UMEI consists of publicly available APIs, allowing any stakeholder to adopt them or to develop

new APIs concerning new services while complying with the UMEI interface specification.

The aim of this deliverable is to describe the implementation of the UMEI and its usage in the

demonstration held in Portugal.

Page 6 of 39

1. Introduction

1.1 Background

The electrical system historically relied upon a set of “implicit services”, provided by classical

generation plants. Assuming the future scenarios and the upcoming perspectives, the availability of

resources that provide these classical types of services will be significantly reduced. The current

outlook of electrical systems shows a growing trend towards the incorporation of DER in the

networks. Consequently, the introduction of new ancillary services and explicit services (replacing

the previous implicit ones) turns out to be an essential requirement to assure the safe management

of the electrical system. Addressing such new services strictly follows the evolution and the

integration of multiple electricity markets, to stress the new services needed in the forthcoming

panorama, whilst promoting the participation of new flexibility resources in the markets, finally

leading these markets to integration at the European level.

The constant evolution of the electricity networks associated with electricity markets' structures,

follows the advances in promoting renewables, and, through this, new participants are entering the

electricity markets, such as the aggregators, the Flexibility Service Providers (FSP), the Balance

Responsible Parties (BRP), among many others.

Many projects and conceptual initiatives have been proposed to improve DER integration as active

flexibility providers in local (oriented to distribution grid) and system-wide (oriented to transmission

grid) services to contribute to a more efficient operation of the system.

The EUniversal project aims to develop a universal approach to the use of flexibility by DSOs and their

interaction with the new flexibility markets, enabled through the development of the concept of the

Universal Market Enabling Interface (UMEI) – a unique approach to foster interoperability across

Europe.

The need for flexibility provision that is fulfilled with distributed resources and the Renewable Energy

Source (RES) that are also connected mostly to the distribution grid are clear signs of the

decentralization of the energy system. This leads to the need for enhanced coordination schemes to

integrate the decentralized actors and the UMEI aims to be part of the enhanced coordination

schemes.

Therefore, within the EUniversal project, a Universal Market Enabling Interface (UMEI) has been
developed to overcome current barriers between different systems and to facilitate the use of
flexibility services and interlink DSO’s active system management with flexibility markets. A set of
market-oriented flexibility services from Distributed Energy Resources (DER) will be implemented to
serve DSO’s needs in a cost-effective way, supporting the energy transition.

1.2 WP7 Objectives

The operative objective of WP7 is to validate the Universal Market Enabling Interface (UMEI) and the
developed tools in different contexts and scenarios made available in the Portuguese Demo. It
assesses flexibility for distribution grids and the market capacity to provide new services to the
DSO. Figure 1 depicts the high-level methodology of development and implementation of the UMEI.

Page 7 of 39

The Portuguese demo has tested the provision of market-based flexibilities from prosumers of the LV
and MV grid via the UMEI and the integration for an improved and smarter distribution grid
operation. As the first step, establishing the estimation and forecast of the grid state from the chosen
LV grid has led to enhanced grid observability. This has helped aggregate and predict the flexibility
potential in the LV grid. Other objectives of the demonstration were the use of flexibilities from the
low voltage grid to supply the LV/MV connection point and therefore to relieve the MV grid.

Figure 1 - High-level development methodology [1]

1.3 The UMEI

The UMEI has materialized in the conceptual architecture design and the implementation of a

standard, agnostic, adaptable, and modular combination of different APIs to link DSOs and market

parties with flexibility market platforms, in coordination with other flexibility users. This approach

allows distributed communication without the need for a central hub.

The development of the UMEI was inserted in the workstream of WP2 [2] [3]- which had several

objectives, namely the definition of flexibility services, the definition of global architecture for the
project through the several developed business and system use cases, and the technical development

of the UMEI. Hence, the UMEI is the materialization of the whole process which strengthens the

cooperation between the several market parties – DSOs, FMOs and FSPs – to enable the provisioning

of the previously defined flexibility services, represented in Figure 2.

Through this distributed architecture, in which every party is responsible for performing the

necessary setup that is needed for the whole system to operate, several challenges are also posed. As

the UMEI is distributed by design, there are no central registries, databases, or instances of

applications, so all the data that is exchanged resorting to this tool must be kept at the origin and/or

the destination, being each party responsible for ensuring the good handling of the data.

Page 8 of 39

Figure 2 - EUniversal Reference Architecture [1]

The UMEI is composed of a set of APIs, organized in several functional groups, as represented in

Figure 3, which allows market participants to retrieve and send information to the Flexibility Market

Operators (FMO).

The API interface is divided into several functional groups. The division follows the natural

chronological and functional order of operations:

• Prequalification phase – not covered by this version of the UMEI. In this phase, basic master

data like portfolios, grid nodes, etc. are set up

• Pre-trading phase

o Defining baselines, the expected power usage, for portfolios

o Defining flexibility zones – the expected demand for flexibility

o Extracting this information, along with market and portfolio information, for use in

the next phase

• Trading phase

o Posting orders, reading orders, and trades

• Post-trading phase

o Providing meter readings for assets used in trades

o Settlement - not covered by this version of the UMEI.

Each group is composed of a set of APIs that allow for CRUD (Create, Read, Update and Delete)

operations to be performed on the resources registered on the market platform for flexibility trading.

For instance, with the order group it is possible to submit new buy and sell orders, coming from the

FSP and DSO side, but also to fetch, eliminate and update orders already submitted before the clearing

of the market occurs.

Page 9 of 39

Figure 3 - UMEI Groups [1]

This set of interactions may change depending on the adopted implementation of the APIs. For

instance, the implementation of meter data exchange may be done bilaterally between the DSO (in its

role as meter data operator) and the FSP (which has control over the resources). In this case, the FSPs

implement the Meter Reading group on its own servers, and the DSO acts as an API client directly on

that implementation, allowing for the very same CRUD operations to be performed in the same way,

although interacting with a different actor of the ecosystem. This last case represents the modularity

and flexibility of the UMEI.

Currently, the UMEI focuses on the technical and operational requirements of each stakeholder. The

registration and pre-qualification phases were therefore not foreseen to be developed and tested

within the scope of the project. The payment processes included in the settlement phase are also not

covered by the specification. Certainly, the successful testing of the UMEI will lead to further

developments regarding registration and pre-qualification as well as validation and settlement.

Anyhow, EUniversal as a research project is not being developed in a specific regulated environment,

and without the present definition of flexibility remuneration, this will not allow for any monetary

transaction.

The UMEI is publicly available on GitHub1, allowing for any stakeholder (DSO, Market Operator,

Aggregators, Consumer, and even TSO) to adopt it or to develop new APIs concerning new services

while complying with the UMEI interface specification.

In chapter 1.4, an overview of the data exchange mechanisms from previous projects, such as InteGrid,

CoordiNet, INTERRFACE, and InterFlex, is done.

The UMEI stands apart from these projects by providing a standard, agnostic, adaptable, and modular

API framework that is designed to facilitate a distributed communication network for trading

flexibility services without relying on a centralized data management system.

1.4 Data exchange mechanisms from previous projects

When analysing previous projects encompassing communication mechanisms for the usage of
flexibility, some have developed data exchange tools to cover the flexibility acquisition and

1 https://euniversal.eu/the-umei/

Page 10 of 39

mobilisation process. EUniversal D1.2 made an extensive summarization of core initiatives in this
field, from which some tools are relevant to analysis, this is the case for the InteGrid, Coordinet,
INTERRFACE, and InterFlex projects.

Each indentified solution had their own focus areas and technical solutions. InteGrid's mechanism
was centered on a data-driven approach to enable smart grid functionalities with a Grid and Market
Hub, which differed from UMEI's decentralized approach with no central hub or registry. CoordiNet
sought to streamline coordination between TSOs, DSOs, and consumers, creating a cooperation
platform for a pan-European market, whereas UMEI's focus is on enabling a set of standard APIs for
flexibility services. INTERRFACE aimed to link European electricity market platforms to create a
unified marketplace. InterFlex developed the E-Flex platform to facilitate the exchange of local
flexibility information.

As it can be seen from the description of the projects below, very often the developed solutions
contain a certain degree of platform centralization, relying on a sole software instance to orchestrate
tha process data exchange. EUniversal differs from this approach since it developed the UMEI
following a decentralized approach, in which there are no single orchestration points and the
communications happen end-to-end.

1.4.1 InteGrid

The H2020 InteGrid project2, was focused on empowering the European electricity grid by integrating
advanced smart grid functionalities and enhancing the role of consumers through a data-driven
approach. Central to this project is the Grid and Market Hub (GM-Hub), which acts as a neutral,
interoperable platform facilitating the connection between various energy sector stakeholders.

The main objective of the GM-Hub was to:

• Enable demand response and smart grid capabilities by allowing different market players,
such as DSOs, TSOs, market operators, consumers, and service providers, to interact and
exchange data in a secure environment.

• Provide both basic and advanced services, which include:
o User registration and authentication.
o Data download and sharing compliant with GDPR for consumer data protection.
o Advanced functionalities like traffic light systems for flexibility management, feedback

on energy consumption, alerts on high consumption patterns, and services for
enhancing consumer engagement.

• Maintain a three-tier cloud-based ICT architecture3 to ensure flexibility, security, and
independence between its presentation, application, and data layers. This design supports a
wide range of functionalities and can be adapted for use outside its initial cloud environment
with minimal integration effort.

• Adhere to standardized data exchange models that are based on industry standards like CIM
IEC 61968, ENTSO-E processes, and custom models for innovative services. These models
facilitate efficient and standardized communication across the platform’s users.

2 https://cordis.europa.eu/project/id/731218

3 Three-tier architecture is a software application architecture that organizes applications into three: presentation tier,

application tier, and the data tier.

https://cordis.europa.eu/project/id/731218

Page 11 of 39

The Gm-Hub (Figure 4) created a standardized, secure, and user-friendly platform that enhances grid
operation and encourages consumer participation in the energy market.

Figure 4 – InteGrid GM-Hub Technical Architecture

1.4.2 CoordiNet

The H2020 CoordiNet4 aimed at demonstrating the benefits of coordination between TSOs, DSOs, and
consumers in providing a more cost-effective, reliable, and green electricity supply. The project
revolves around three central objectives, including implementing three large-scale demonstrations
across Spain, Sweden, and Greece to validate the potential efficiency gains through coordinated
actions in the electricity market.

The initiative also focuses on defining and testing a set of standardized products for system services,
which will cover the entire process from reservation to activation and settlement. These standardized
processes are intended to facilitate smoother transactions and use of assets within the energy market.
A significant outcome of the project is the development of a cooperation platform that will serve as a
foundation for a pan-European market, enabling all market players, including end-consumers, to offer
system services and thus, create new opportunities for revenue.

The technical emphasis is placed on crafting services for each phase of the operational process, which
will interface with a coordination platform that is set up in each demonstration country. This means
that specific services are designed to interact seamlessly with the national platforms to ensure

4 https://coordinet-project.eu/

https://coordinet-project.eu/

Page 12 of 39

efficient coordination and data sharing between TSOs, DSOs, and consumers within the energy market
of each participating country.

Figure 5 shows the system architecture for the Spanish demonstrator, which leverages the defined
data exchange models and sets up a common coordination platform for the exchange of data. A link to
the Euniversal project is N-SIDE as active market party.

Figure 5 – Coordinet System Architecture for the Spanish Demonstrator

1.4.3 INTERRFACE

The INTERRFACE5 project aimed to connect European electricity market platforms, creating a trading
space for energy services. Its strategic goals involved establishing a common market structure,
developing standardized energy service products, improving TSO and DSO cooperation, and
integrating a wide range of energy assets to enhance market offerings. The project also intended to
introduce digital technologies that are already familiar to consumers in other domains into the energy
market.

On a technical level, the project focused on designing the IEGSA, Figure 6, to link market platforms
and enable cross-border energy trading. A reference IT infrastructure is being developed to support
this architecture. The project is experimenting with digital technologies such as blockchain and IoT
to facilitate energy transactions and smart asset management. These technologies are crucial for
congestion management, activating local flexibility for system services, and incorporating DERs into
the market. INTERRFACE also prioritized consumer engagement in the electricity markets, utilizing
demand response and local market mechanisms to offset the variability of renewable energy sources.
Demonstrating the effectiveness of the IEGSA and its supporting IT infrastructure is a key objective,
as is fostering further research and creating new business opportunities, especially for SMEs and
startups through an Open Call funding initiative.

5 http://www.interrface.eu/

http://www.interrface.eu/

Page 13 of 39

Figure 6 – INTERRFACE IEGSA Architecture [5]

1.4.4 InterFlex

The InterFlex6 project, under the Horizon 2020 framework, involved the development of the E-Flex
platform by Enedis. E-Flex is designed to facilitate the exchange of information for matching supply
and demand through a local flexibility mechanism. Aggregators use this platform to post their
flexibility offers and receive requests for activation from the distributor as needed. E-Flex manages
most of the flexibility process, but it does not handle constraint identification, contract management
for flexibility offers, or the calculation of activated volumes. Despite these gaps, Enedis considers E-
Flex a success and uses it as a foundation to integrate the flexibility concept into their IT systems.

Enedis is focusing on improving the management of flexibility on four fronts: identifying flexibility
needs and constraints, enhancing topological and contractual information, streamlining interactions
with flexibility service providers, and providing accurate data for verification and clearing services.

The project utilizes the Common Information Model (CIM), endorsed by international bodies like IEC
and ENTSO-e, because it provides a standardized approach that ensures interoperability, particularly
between TSOs and DSOs. The E-Flex system has yet to include contractual information, and Enedis is
considering various scenarios to address this as part of the Clean Energy Package implementation in
France. The concept of reservation is also under development to ensure readiness for offer activation.

6 https://interflex-h2020.com/

https://interflex-h2020.com/

Page 14 of 39

2 Implementation of the UMEI

2.1 Flexibility reference process for the demo

Within WP2, a mapping of the flexibility process, involving several stakeholders and covered by the
UMEI was done. The UMEI, as developed in Euniversal, covers the following stages:

• Flexibility needs assessment

• Flexibility procurement/trading

• Flexibility activation

• Measurement data retrieval

Figure 7 – Flexibility process steps covered by the UMEI [1]

This process was taken by the PT demo and more detailed technical processes were designed and

implemented to exchange the necessary information with the market operator, flexibility provider,

and respective customers providing the services, in the latter case, outside of the UMEI, since the

UMEI is meant to facilitate DSO-FMO-FSP (Aggregator) data exchange. These processes, for NODES

and N-SIDE short-term flexibility use cases, are shown in Figure 8 and Figure 9. The steps of the

process which contain UMEI-based requests are identified with the blue EUniversal logo.

Further information on the detailed use case steps can be found in [6].

Page 15 of 39

Figure 8 - NODES short-term use case

Page 16 of 39

Figure 9 - N-SIDE short-term use case

Page 17 of 39

2.2 Actors and responsibility mapping

A testing and implementation methodology with defined responsibility mapping has been developed
jointly between the demo partners to ensure clear delineation of roles and precise daily timings for
the execution of tasks by each system participating in the demo, and consequently data exchange
through the UMEI.

Each actor's responsibilities and the corresponding timeline are outlined in the provided tables (Table
1 and Table 2) for both the NODES UC and the N-SIDE UC scenarios, indicating a structured approach
to managing the bid creation, collection, submission, and activation signal processes within the
market platforms. This systematic assignment of tasks and coordination ensures a streamlined
workflow, essential for the efficacy of the operations within the flexibility market.

Table 1 - NODES short-term use case daily sequence of actions

Step Responsible Time (PT) CET time

1 Create the bids on NODES CENTRICA At 2:15 At 2:15pm

2 Collect bids from NODES platform E-REDES
2:35pm to
2:50pm 3:35pm to 3:50pm

3 Send the bids to INESC TEC tool E-REDES
2:35pm to
2:50pm 3:35pm to 3:50pm

4 Data process INESC TEC min:5 min

5 Request selected offers (MV&LV) E-REDES
2:55pm to
3pm From 3:55pm

6 Submit offers to NODES platform E-REDES
2:55pm to
3pm From 3:55pm

7 Collect NODES market results CENTRICA 3pm 4pm

8 Activation Signal CENTRICA From 3pm
LV: Automatic
MV: Message to E-REDES

Page 18 of 39

Table 2 - N-SIDE short-term use case daily sequence of actions

Step Responsible Time (PT) CET time

1 Available Flex Areas INESC TEC 2pm 3pm

2 Submit flex areas to N-SIDE platform E-REDES From 2pm From 3pm

3 Retrieve Flex Areas from N-SIDE CENTRICA From 2pm From 3pm

4 Submit offers to N-SIDE CENTRICA At 2:15pm At 3:15pm

5 Market closing N-SIDE 2:50pm 3:50pm

6 Market clearing N-SIDE 3pm 4pm

7 Collect market results CENTRICA From 3pm From 4pm

8 Activation Signal CENTRICA From 3pm
LV: Automatic
MV: Message to E-REDES

2.3 UMEI API and Host selection

The steps for the implementation of the UMEI are simple for anyone familiar with REST API
implementation. The following steps are necessary:

1) Map the interactions for your flexibility-related process and the information to be exchanged
2) Identify the involved actors in the exchange of data
3) Identify which actor is going to provide and receive information upon request (reactively)
4) Check the UMEI list of available APIs and identify which one fits the purpose
5) The actor identified in 3. will be the one to host the chosen API (implement server-side code)

and make it available for the other(s)

For the implementation, actors can as an example leverage OpenAPI features enabled by Swagger7
and generate client and server-side boilerplate code. The setup process for the implementation
implies that there is the possibility to have more than one hosting actor for the system, and no need
for a mediation platform, making the UMEI a truly distributed data exchange interface. Naturally,
whoever party implements the API becomes responsible for managing and providing credentials to
others. This makes the usage of the UMEI particularly straightforward for actors that act mostly as
UMEI API clients (e.g., DSO and FSP) since they just need to invoke an API endpoint to send and
retrieve information.

7 https://swagger.io/

Page 19 of 39

Table 3 - UMEI overall structure

Group Name Usage

Baseline Managing portfolio

baselines

Used by the FSPs to manage baselines into the

market platform.

Order Manage Market

Orders

Used by the DSOs and FSPs to view and execute

orders’ related operations in the market platform.

The FMO will perform clearing/matching, either

continuously or on a specific schedule, between

orders. The result of this process will be the trades.

Meter Reading Manage Meter

Readings

Used by the DSOs, and possibly other market

participants, to submit and manage metering data

Market List All Markets Used by market participants to get the available

markets

Portfolio Manage Portfolios Used by FSPs to submit and manage portfolios on the

market

Trade List Market Trades Used by market participants to retrieve the market

trades (the result of the matching process between

buy/sell orders)

Flexibility Zones Manage Flexibility

Zones

Used by DSOs to define specific flexibility areas,

composed of a set of portfolios

The table below shows the steps which were implemented in the PT demo resorting the UMEI,
corresponding to the white cells. It is possible to note that the API host was always the FMO. The
creation of portfolios was done in the GUI of the market operator because it was more straightforward
and the resources and grids were static, and the meter readings retrieval from the DSO side was not
applicable to the PT demo scope.

Page 20 of 39

Table 4 - Flexibility steps and participating actors

Step
Actors

UMEI Endpoint
DSO FMO FSP

Send flexibility orders to the

market
X

X

(API host)
X

POST /Orders

And

POST /Flexibility Zones

Consult the sell bids in the

market
X

X

(API host)
 GET /PublicOrders

Retrieve market clearing

results
X

X

(API host)
X GET /Trades

Create a new portfolio of

flexible resources
 X

(API host)
X POST /Portfolios

Periodically send meter

readings to the FSP
X X

(API host)

POST

/MeterReadings/create-

multiple

Send meter readings X X
X

(API host)
POST /MeterReadings

In Table 4, the lines in grey color were not tested in the PT demo because these steps were done
directly in the GUI of the market platforms since they were one-time configurations.

Page 21 of 39

3 Technical deployment

3.1 Technological choices and architecture

The development and implementation of the necessary software to use available APIs from NODES,

N-SIDE, and CENTRICA, and integrate them with the legacy DSO software, has been achieved by

implementing a set of modules using an Azure cloud resource group (infrastructure used by the IT

processes of E-REDES) which will host the necessary DSO tools defined for performing the necessary

calculations and mechanisms to retrieve and process data. The architecture for such a system is

presented in Figure 10.

Figure 10 - DSO Architecture [1]

To ensure the security of the proposed solution, this platform is divided into two areas with different

communication requirements/constraints:

• Area 1: Dedicated to important systems that use customer data. This area is designed to

contain both the information and the resources, so that is only accessible to key users of the

project. The objective of this area is to ensure systems' isolation from potential external

threats.

• Area 2: Dedicated to communication with external platforms and the implantation of the

software to use the referred APIs. The purpose of this area is to ensure that a separate layer

exists between the solution’s “core” systems (area 1) and the components responsible for

communicating with external platforms.

Page 22 of 39

3.2 Authentication mechanisms

The UMEI API specification allows implementers to choose their preferred authentication
methods. Rather than dictating a specific approach, flexibility is offered for users to select
authentication mechanisms that best fit their corporate security requirements. This practical
approach ensures easy integration into various technological environments, allowing
prioritisation of security based the specific needs.

Figure 11 - Basic API Authentication modes [7]

Ensuring the secure and authorized access of sensitive data through APIs is a fundamental aspect
of modern application development. In this context, two prevalent authentication mechanisms
come to the forefront as main examples: OAuth 2.0 and token-based authentication. Each one of
these authentication mechanisms was used by the Flexibility Market Operators in EUniversal, by
NODES and N-SIDE, respectively.

OAuth 2.0 is a protocol explicitly designed for the secure authorization of third-party applications,
allowing them access to user data without exposing sensitive credentials. This process involves
four key entities: the resource owner (typically the user), the client application, the authorization
server, and the resource server. Within the OAuth 2.0 framework, the client initiates the process
by requesting authorization from the resource owner. Upon approval, the client obtains an access
token from the authorization server. This token serves as a temporary credential that the client
presents to the resource server to gain access to the specified resources. The authorization server
plays a crucial role in validating the request and ensuring the proper issuance of access tokens.

On the other hand, token-based authentication is a method where the client is authenticated
through a unique token rather than a direct verification of credentials with each request. This
approach is particularly common in stateless applications like mobile or single-page applications.
In a token-based authentication scenario, the user first provides their credentials for
authentication. Upon successful authentication, the server generates a unique token, which is then
transmitted to the client and securely stored. When the client needs to access protected resources,
it includes this token in the header of its API requests. The server, in turn, validates the
authenticity of the token and checks its permissions before granting access to the requested
resources.

Page 23 of 39

In the context of the PT pilot, as E-REDES (DSO) and CENTRICA (FSP) have to exchange data with
both platforms, they had to implement both authentication methods, however this is a fairly
straightforward process that is easily achieved when having the appropriate credentials and the
right testing tools (e.g. postman, swagger, etc.).

4 Usage of the UMEI

This chapter presents an analysis of the usage patterns of the UMEI, particularly from E-REDES,
CENTRICA, N-SIDE, and NODES systems, including statistics over different periods of time.

It offers insights into the number and types of requests made, the endpoints targeted, as well as the
success and error rates. This analysis serves as a tool to assess the system’s current usage patterns
and potential bottlenecks.

4.1 Usage statistics of the API for N-SIDE (Market Operator)

Between the 1st of September and 30th of November 2023, a total of 17,061 calls were initiated. Out
of these, 13,480 were GET requests, with the majority aimed at the FlexZone endpoint, and 3,581 were
POST requests. Successful calls during this period numbered 14,545, representing an 85.2% success
rate.

A significant portion of the error rate, specifically 93%, was due to failures in POST requests.

Considering the data from the most recent complete 24-hour window, there were 363 calls. A
breakdown of these calls is as follows: 165 were GET requests, all made by a user likely to be identified
as Centrica, and 198 were POST requests, with 135 initiated by Centrica and the remaining 63 by a
different user. The success rate for this day was exceptionally high at 98%, with 356 calls being
successful.

All 7 failed calls within this last day were the result of POST requests targeted at the Orders endpoint
that contained invalid FlexZone data.

In summary, since the beginning of September (3 months):

• 17061 calls have been made
• 13480 GET (mainly on the FlexZone)
• 3581 POST
• 14545 calls succeed (85.2%)
• 93% of the error come from POST request

1 day (i.e. exemplar 24h time window):

• 363 calls have been made
• 165 GET (all from the same user: Centrica I guess)
• 198 POST (135 from Centrica, 63 from another user)
• 356 calls succeed (98%)
• The 7 errors come from POST on Orders with an invalid Flexzone

4.2 CENTRICA API Usage (Flexibility Service Provider)

Takin the week period of December 11th to 19th, a total of 1166 bids were placed by Centrica to the
flexibility market: 589 bids were sent to NODES and 577 were sent to N-SIDE.

For every N-SIDE bid, an API call was made to the FlexibilityZones API (see 1.3) to check the
availability of zones before placing the bid, resulting in at least 577 API calls. The Trading API was
called 1166 times to verify if the bids were accepted once the market cleared.

The logs below are examples of the process in action: A query for flexibility zones would be sent, and
depending on the availability, responses could either indicate that there were no zones available or
provide details of the available zones.

For sell order bids, information about the order, such as the organization details, type of order, and
pricing, was sent, followed by a confirmation of reception with the status "Pending".

Page 25 of 39

Checking if a bid was accepted was also logged, with an API call. A response with no trade indicated
an unaccepted order, whereas the presence of a URL meant that follow-up actions were necessary to
determine the status of a bid.

Below is a sample of the obtained logs from CENTRICA systems for several cases: (1) Get flex zones,
(2) Sell order bid, (3) Check bid acceptance.

Get flex zones:

2023-12-16 14:15:21.197 | DEBUG | euniversal.control_service.umei.nside_client:get_flexibility_zone:62 - send to UMEI

https://pom-euniversal-pt.n-side.com/v0/FlexibilityZones?periodFrom.gte=2023-12-17T08:30:00Z&periodTo.lte=2023-12-

17T09:00:00Z

Return if no zones available:

2023-12-16 14:15:21.298 | DEBUG | euniversal.control_service.umei.nside_client:get_flexibility_zone:68 - received

b'{"items":[]}'

Otherwise:

2023-12-11 14:15:05.947 | DEBUG | euniversal.control_service.umei.nside_client:get_flexibility_zone:62 - send to UMEI

https://pom-euniversal-pt.n-side.com/v0/FlexibilityZones?periodFrom.gte=2023-12-12T13:30:00Z&periodTo.lte=2023-12-

12T14:00:00Z

2023-12-11 14:15:06.033 | DEBUG | euniversal.control_service.umei.nside_client:get_flexibility_zone:68 - received

b'{"items":[{"id":"3648f0b6-08f8-491f-bd04-e1f2bf8e1947","periodFrom":"2023-12-12T13:30:00Z","periodTo":"2023-12-

12T14:00:00Z","portfolioIds":["portfolio6"]},{"id":"8c8dd3fd-d415-4af9-a429-7167b5d667f1","periodFrom":"2023-12-

12T13:30:00Z","periodTo":"2023-12-12T14:00:00Z","portfolioIds":["portfolio1"]},{"id":"bac1a9e8-a87a-4cd5-a28d-

f4aa5b18a36e","periodFrom":"2023-12-12T13:30:00Z","periodTo":"2023-12-12T14:00:00Z","portfolioIds":["portfolio2"]}]}'

Sell order bid:

Send

2023-12-16 14:15:17.021 | INFO | euniversal.control_service.umei.umei_client:send_sell_order:48 - Sell order is

{'ownerOrganizationId': 'db2e743a-1fb0-4c09-b06a-4318a07fb8ae', 'gridNodeId': '4fa2dc70-f413-40f1-a59a-d6646283abaa',

'marketId': '8ae941a5-21b5-4350-bac0-01fc66ad24aa', 'portfolioId': '269daac5-401d-474d-951a-1565e40175d0',

'regulationType': 'Down', 'side': 'Sell', 'pricePoints': [{'quantity': 0.002, 'unitPrice': 0.00042855999999999987}],

'minimumAcceptanceQuantity': 0.001, 'periodFrom': '2023-12-17T01:00:00 +0000', 'periodTo': '2023-12-17T01:30:00 +0000'}

Receive

2023-12-16 14:15:17.216 | DEBUG | euniversal.control_service.umei.umei_client:send_sell_order:57 - received

b'{"id":"550738d3-67b3-4b21-ab7b-21ba9e376861","ownerOrganizationId":"db2e743a-1fb0-4c09-b06a-

4318a07fb8ae","status":"Pending","completionType":null,"gridNodeId":"4fa2dc70-f413-40f1-a59a-

d6646283abaa","flexibilityZoneId":null,"marketId":"8ae941a5-21b5-4350-bac0-01fc66ad24aa","portfolioId":"269daac5-401d-

474d-951a-

1565e40175d0","regulationType":"Down","side":"Sell","pricePoints":[{"quantity":0.002,"unitPrice":0}],"minimumAcceptanceQu

antity":0.001,"periodFrom":"2023-12-17T01:00:00Z","periodTo":"2023-12-17T01:30:00Z","longflexContractId":null}'

Checking if a bid was accepted

2023-12-11 17:30:01.075 | DEBUG | euniversal.control_service.umei.umei_client:get_trade_by_orderid:110 - send to UMEI

https://umei-extern-test.nodesmarket.com/umei/Trades?orderId=74a007a3-218d-41c6-920d-c7cd8748cc94

https://pom-euniversal-pt.n-side.com/v0/FlexibilityZones?periodFrom.gte=2023-12-17T08:30:00Z&periodTo.lte=2023-12-17T09:00:00Z
https://pom-euniversal-pt.n-side.com/v0/FlexibilityZones?periodFrom.gte=2023-12-17T08:30:00Z&periodTo.lte=2023-12-17T09:00:00Z
https://pom-euniversal-pt.n-side.com/v0/FlexibilityZones?periodFrom.gte=2023-12-12T13:30:00Z&periodTo.lte=2023-12-12T14:00:00Z
https://pom-euniversal-pt.n-side.com/v0/FlexibilityZones?periodFrom.gte=2023-12-12T13:30:00Z&periodTo.lte=2023-12-12T14:00:00Z
https://umei-extern-test.nodesmarket.com/umei/Trades?orderId=74a007a3-218d-41c6-920d-c7cd8748cc94

Page 26 of 39

If order was not accepted, there are not trades

2023-12-11 17:30:01.572 | DEBUG | euniversal.control_service.umei.umei_client:get_trade_by_orderid:112 - received

b'{"numberOfHits":0,"items":[],"links":null}'

Otherwise

2023-12-11 17:30:00.767 | DEBUG | euniversal.control_service.umei.umei_client:get_trade_by_orderid:110 - send to UMEI

https://pom-euniversal-pt.n-side.com/v0/Trades?orderId=b3d3df93-ee8d-4ba9-85ee-8f51d59aa49b

4.3 E-REDES API Usage (DSO)

This section provides statistics on the usage of the UMEI during a week-long PT demo conducted by
E-REDES. The demo involved integration with two flexibility market operators, N-SIDE and NODES.
The focus of the usage was on the Orders and Flexibility Zones endpoints, as the portfolios were
already pre-defined, and the measurements were analysed in a post-operation scenario.

Figure 12 refers to the number of API calls per day of operation, this number is quite stable throughout
the different days except 7/12, in which there weren’t many bids to the market being done. The error
rate of the API requests was typically around 5%.

Figure 12 - Frequency of API requests / day

Throughout the week of operation, the majority of the HTTP methods used were focused on posting
data, specifically creating bids in the local flexibility markets. A smaller portion of the methods were
used for consulting data, retrieving bids from the FSPs, and assessing the market potential for
addressing the identified flexibility requirement.

https://pom-euniversal-pt.n-side.com/v0/Trades?orderId=b3d3df93-ee8d-4ba9-85ee-8f51d59aa49b

Page 27 of 39

Figure 13 - HTTP Methods of the Requests

The Figure 13 and Figure 14 depict the distribution of HTTP requests made, categorized by the
request type (POST and GET), the flexibility market operator (either NODES or N-SIDE), and the
specific endpoint of the process group API utilized for each request.

Figure 14 - Requests by API and Market

This week-long excerpt of the PT demo provides valuable insights into the functional utilization of the
UMEI interface. The predominant part of the requests was cantered on the creation of bids via POST
HTTP methods. The stable frequency of API calls depicts a consistent use-case scenario across the
week. Despite this, the 5% error rate suggests there is room for improving the reliability and
efficiency of the API and the procedures for using it.

These statistics underscore the importance of monitoring, analysis, and continual optimization of the
system. Understanding usage patterns helps in identifying performance bottlenecks, informing future
upgrades, and ensuring the API's alignment with user requirements and market dynamics. Moving

0

100

200

300

400

500

600

700

800

900

POST POST GET

N-Side Nodes Nodes

FlexibilityZones Orders PublicOrders

Requests by API and Market

Page 28 of 39

forward, fostering a lower error rate and ensuring high availability during peak market transactions
will be strategic for enhancing user experience and ensuring the seamless operation of flexibility
markets.

Page 29 of 39

5 Conclusions

5.1 Implementation challenges and lessons learned

The lessons learned highlight that the UMEI does not eliminate the need for thorough testing the
interoperation of systems from different companies once the APIs are implemented. One reason for
continued testing is that the use of APIs may generate unexpected errors in the system setup phase.
This unintended usage leads to scenarios where the same implementation cannot be simply copied
and used across SOs and FSPs without appropriate testing.

Additionally, best practice guidelines would be beneficial for both clients and hosts as they implement
these interfaces. Clear guidelines would help ensure that implementations meet the standards
required for effective interaction between API clients and API hosts.

In the process of data exchange between FSPs and DSOs, there is a specific requirement from the
DSO's voltage control tool that needs each FSP to provide detailed, disaggregated bid information [8].
This level of detail goes beyond aggregated bids, requiring that FSPs not only submit an overall bid
but also break down these bids to the level needed by the DSO's grid interest points. To accommodate
this requirement, the FSPs must send their disaggregated bids, or sufficiently detailed aggregate bids,
to the FMO, from which the DSO can then retrieve the information. The UMEI supports this process
by allowing these two types of messages, aggregated and disaggregated, to be sent in parallel without
necessitating any modifications to the existing message specifications. However, the market rules and
design from a business perspective may pose additional challenges in terms of providing visibility of
the disaggregated bids under the same network, since the anonymous characteristic of a local
flexibility market is not compatible with the usage of flexibility services for voltage control in the LV
networks.

5.2 UMEI advantages and improvement opportunities

Utilizing the UMEI offers benefits for System Operators, FMOs, and FSPs, and ultimately may improve
the consumer experience. With the UMEI in place, SOs can standardize their communication with
market platforms, irrespective of the specific market platform in use. Present and emerging FMOs can
leverage a tried-and-tested interface to initiate new markets, thus simplifying the collaboration
process with other stakeholders. This paves the way for easier penetration into new markets and
regions. For FSPs, the benefit lies in the ability to engage with multiple marketplaces via a single
implementation of the UMEI, the only necessity being the appropriate endpoint details for each
application. More importantly, the interface lets any actor independently host the APIs, eliminating
dependence on a single hosting entity.

A Scalability and replicability analysis was performed as a task of the project [9]. The results described
in the ANNEX, show that the UMEI API presents, in general, good compliance with best practices of
REST API design. UMEI follows all the rules for using HTTP request methods, versioning, and
representation design. In certain implementations, the UMEI can also apply all the rules related to
client concerns and error handling.

The category where the UMEI presents lower quality is metadata design, followed by the category of
client concerns when considering the baseline case, Figure 15. Nevertheless, the best practices
included in these two categories are the ones commonly considered by expert developers as
the least relevant rules for API design [11]. In addition to this, the rules in these categories account
for less than 12% of the list. Therefore, considering this, the scalability and replicability of UMEI are
expected to not be strongly affected by the low scores in these categories.

Page 30 of 39

This study also highlighted potential technical improvements to the specification, which can be seen
as potential avenues for evolution:

• TSO compatibility (for instance, for pre-qualification)
• Integrating additional flexibility process stages (like financial settlement)
• Synchronization of flexibility registers
• Creation and distribution of official client software in one or several programming

languages
• Establishment and dissemination of an official test suite or toolset for implementation

validation

.

Page 31 of 39

6 ANNEX (From deliverable 10.3)

6.1 UMEI API SCALABILITY AND REPLICABILITY ANALYSIS

6.1.1 Motivation and methodology

The Universal Market Enabling Interface (UMEI) developed within the EUniversal project
materializes into publicly available Application Programming Interfaces (APIs) that support the
interactions between the different actors and the new flexibility markets. These APIs have been
specified in EUniversal deliverables D2.4 [3] and D2.5 [2].

For every technical development, an SRA helps to determine the potential of a solution to be
replicated outside the demonstration sites, and how it can increase its range of action, or the number
of actors involved. When analyzing Information and Communication Technologies (ICT), two
approaches can be differentiated: quantitative (e.g., simulations or laboratory experiments of
communications between the devices/systems involved in a use case) or qualitative (e.g., aspects such
as interoperability, robustness, or reliability).

A quantitative approach to analyze the UMEI API is not appropriate for two reasons. First, because
the communications would be done through the internet, which is difficult to simulate accurately, and
because it does not rely on ad-hoc communication infrastructures as other solutions. And secondly,
because an API following a Representational State Transfer (REST) architecture, which is the case of
the UMEI API, already provides great scalability from the technical point of view.

Qualitatively, by design, the UMEI API is conceived to be agnostic, adaptable, and modular, and to
provide interoperability between DSOs, market parties, and platforms. This means that all the
stakeholders should be able to implement it, regardless of the data models and standards they use in
their systems (e.g., CIM, IEC 61850, etc.).

Despite the fact that these characteristics guarantee a great level of technical scalability and
replicability, the implementation of an API may be facilitated or hampered by its design rules. That is
to say, if other developers find it difficult to understand and use the designed API or following
versions, the possibilities of replicating and scaling-up the UMEI are reduced. Therefore, the
scalability and replicability of the UMEI API will be ultimately related to its understandability and
reusability, which are achieved when the best practices for REST API development are applied [11].

To evaluate the quality of the UMEI API in these terms, a list of up to 69 best practices has been
collected from existing guidelines and similar studies [11] [8] [12] [9] [13]. These best practices are
divided into seven categories:

• Uniform Resource Identifier (URI) design. (Table 5) A list of best practices and common
rules that would improve the understandability and reusability of the URIs by future
developers that use the API.

• Request methods. (Table 6) The implementation of HTTP methods such as PUT, GET, POST,
DELETE or HEAD, should follow some basic rules so that the API can be correctly implemented
by future developers that use the API.

• Error handling. (Table 8) The practices in this category define some rules on how HTTP
messages must be used as a response to a HTTP request method [11].

Page 32 of 39

• Metadata design. (Table 9) The practices in this category specify how HTTP headers should
be used to complete requests with metadata [11].

• Representation design. (Table 7) This category checks the consistency of the API to
represent media type formats, schemas, resources, and error responses.

• Client concerns. (Table 10). Rules relevant for API clients.

• Versioning. (Table 11) This category provides the best practices in how the versions of the
APIs should be identified [14]. This category is directly related to replicability, as a bad
versioning system may make implementations of the API much more complex for developers.

To check the compliance of the UMEI API with this list of best practices, partners from WP2 were
asked to fill in the checklist with a “Yes”, “No”, “Not sure”, or “Not applicable N/A”. The results obtained
are discussed in the following subsection.

Page 33 of 39

6.1.2 Results

Figure 15 shows the compliance of the UMEI API with the best practices for REST API design based
on the information provided by WP2 partners. The score for each category, represented by a
percentage, has been calculated by dividing the number of “Yes” (i.e., practices followed) by the total
number of practices that could be applicable to UMEI. That is, those practices where the answer was
“N/A” were not considered in the calculation. It must be highlighted that the UMEI API allows for a
certain degree of freedom when implementing it, so some specific practices may be followed in some
implementations and not in others. For this reason, Figure 15 shows two cases. The blue line
represents the baseline case or worst-case scenario, that is, an implementation of the UMEI where
none of the implementation-dependent practices are followed. On the other hand, the orange dashed
line represents the potential case, which considers that all the best practices that may be followed
during implementation are indeed applied.

Figure 15 - Compliance of the UMEI API with the best practices for the design of REST APIs that have an
impact on its scalability and replicability. [10]

Starting with how the URIs are designed, the UMEI API got a baseline score of 72.2% and a potential
score of 83.3%. As shown by Table 5 three best practices were considered not applicable to the UMEI
API so they were not considered to calculate these scores. There are two practices that are not
followed:

• Using only lowercase letters in URI paths: the implementation of the UMEI API might be case
sensitive. This may cause some trouble to developers in case an error arises during

implementation due to this reason. Therefore, developers will have to pay special attention to
the type of letters in URI paths.

• Avoiding version number in the path. It is expected that the UMEI API will include the version
number in the URI path. Developers will have to know at every moment which API version
they are using.

Page 34 of 39

Table 5 - Best practices for URIs design

Category: URIs design Compliance

A trailing forward slash (/) should not be included in URIs No

File extensions should not be included in URIs Yes

A plural noun should be used for store names Yes

A verb or verb phrase should be used for controller names Yes

The query component of a URI may be used to filter collections or stores Yes

Forward slash separator (/) must be used to indicate a hierarchical relationship Yes

Hyphens (-) should be used to improve the readability of URIs N/A

Underscores (_) should not be used in URI Yes

Lowercase letters should be preferred in URI paths No *

A singular noun should be used for document names N/A

A plural noun should be used for collection names Yes

Variable path segments may be substituted with identity-based values N/A

Avoiding version number in the path No

Avoiding version number in the query parameters Yes

Avoiding CRUD actions in query parameters Yes

Consistent subdomain names should be used for the API NS *

CRUD function names should not be used in URIs Yes

Use path variables to separate elements of a hierarchy, or a path through a
directed graph

Yes

API as part of the subdomain NS

The query component of a URI should be used to paginate collection or store
results

Yes

Keeping as much information as possible in the URI, and as little as possible in
request metadata

Yes

*implementation specific

**implementation might be case sensitive

In addition to this, two best practices related to subdomains (using consistent subdomain names and
including the API as part of the subdomain) depend on the specific implementation of UMEI.

For the best practices when using HTTP request methods, shown by Table 6, and representation
design, shown by Table 7, the UMEI API got the maximum score of 100% in both the baseline and
potential cases. Since the API is expected to not use the HEAD method, the rule associated to it was
retrieved from the analysis.

Table 6 - Best practices for request methods

Category: Request methods Compliance

PUT must be used to both insert and update a stored resource Yes

GET and POST must not be used to tunnel other request methods Yes

GET must be used to retrieve a representation of a resource Yes

POST must be used to create a new resource in a collection Yes

POST must be used to execute controllers Yes

DELETE must be used to remove a resource from its parent Yes

HEAD should be used to retrieve response headers N/A

PUT must be used to update mutable resources Yes

Page 35 of 39

Table 7 - Best practices for representation design

Category: Representation design Compliance

XML / JSON may optionally be used for resource representation Yes

Minimize the number of advertised "entry point" API URIs Yes

Consistent form to represent media type formats Yes

Consistent form to represent media type schemas Yes

Consistent form to represent error responses Yes

The UMEI API also shows very good design in error handling with a score of 92.85% and 100% in
the baseline and potential cases, respectively. As shown by Table 8, up to five practices were
considered not applicable to the UMEI API, and only one depends on the implementation (HTTP error
304, “Not modified”, that should be used to preserve bandwidth).

Table 8 - Best practices for error handling

Category: Error handling Compliance

200 ("OK") should be used to indicate nonspecific success Yes

200 ("OK") should not be used to communicate errors in the response body Yes

201 ("Created") must be used to indicate successful resource creation Yes

202 ("Accepted") must be used to indicate successful start of an asynchronous
action

N/A

204 ("No content") should be used when the response body is intentionally
empty

Yes

301 ("Moved permanently") should be used to relocate resources N/A

302 ("Found") should not be used Yes

304 ("Not modified") should be used to preserve bandwidth No *

400 ("Bad request") may be used to indicate nonspecific failure Yes

401 ("Unauthorized") must be used when there is a problem with the client's
credentials

Yes

403 ("Forbidden") should be used to forbid access regardless of authorization
state

Yes

404 ("Not found") must be used when a client's URI cannot be mapped to a
resource

Yes

405 ("Method not allowed") must be used when the HTTP method is not
supported

Yes

406 ("Not acceptable") must be used when the requested media type cannot be
served

N/A

409 ("Conflict") should be used to indicate a violation of resource state N/A

412 ("Precondition failed") should be used to support conditional operations N/A

415 ("Unsupported Media Type") must be used when the media type of a
request's payload cannot be processed

Yes

500 ("Internal Server Error") should be used to indicate API malfunction Yes

Use JSON as error message response Yes

Page 36 of 39

*implementation specific

Regarding metadata design, it is the category where the UMEI API gets the lowest scores: 40% for
the baseline, and 60% for the potential case. Table 9 shows that the UMEI API does not use content-
length in the metadata and it also does not use location to specify the URI of a newly created resource.
Depending on the implementation, caching may be used.

Table 9 - Best practices for metadata design

Category: Metadata design Compliance

Content-Length should be used No

Location must be used to specify the URI of a newly created resource No

Caching should be encouraged No *

Content-Type must be used Yes

Custom HTTP headers must not be used to change the behavior of HTTP
methods

Yes

*implementation specific

For the best practices regarding client concerns, the UMEI API gets a score of 66.67% for the baseline,
and 100% for the potential case. However, it must be considered that the medium value of the baseline
case is mainly caused by the reduced number of practices in this category (only three, as shown by
Table 10). Depending on the implementation, Cross-Origin Resource Sharing (CORS) may be
supported by the UMEI API to provide multi-origin read/write access from JavaScript.

Table 10 - Best practices for tackle client concerns

Category: Client concerns Compliance

The query component of a URI should be used to support partial response Yes

CORS should be supported to provide multi-origin read/write access from
JavaScript

NS *

New URIs should be used to introduce new concepts Yes

*implementation specific

For the last category, versioning, the UMEI API, as for the categories of request methods and
representation design, also gets the maximum score of 100% for both the baseline and potential case.
Table 11 shows that two practices were found to not be applicable to the UMEI API. However, in
addition to the list of best practices for versioning, it was asked if the logic for handling the responses
would change from one version to another, being the answer negative. In this case, [14] suggests,
based on Apigee and Finnish Government’s guidelines, to put the version on the HTTP header. This,
which could be considered just a recommendation instead of a best practice, is something not covered
by the current UMEI specification but that would depend on the specific implementation.

Page 37 of 39

Table 11 - Best practices for API versioning

Category: Versioning Compliance

Increments major version when incompatible API changes are made Yes

Increment minor version when functionalities are added in a backwards-
compatible way

N/A

Increment patch version when backwards compatible bug fixes are made N/A

Increment draft version when changes are made during the review phase that
are not related to production releases

Yes

API extensions do not take anything away Yes

API extensions de not change processing rules Yes

API extensions do not make optional things required Yes

Anything added in the API extension is optional Yes

6.1.3 Interim conclusions

To get an overall idea of the quality of the UMEI, for this analysis it has been considered that the
outcome of the survey carried out by [11] about the importance of these practices perceived by eight
expert developers. In that survey, the categories of URI design, HTTP request methods, error handling,
and representation design are considered more relevant by developers. On the other hand, rules from
the client concerns and metadata design categories were rated as less relevant. This means that, as
long as an API performs reasonably well in the most relevant categories, a good level of
understandability and reusability can be expected.

Results show that the UMEI API presents, in general, a good compliance of best practices of REST API
design. UMEI follows all the rules for using HTTP request methods, versioning, and representation
design. In certain implementations, the UMEI can also apply all the rules related to client concerns
and error handling.

The category where the UMEI presents lower quality is metadata design, followed by the category of
client concerns when considering the baseline case. Nevertheless, the best practices included in these
two categories are the ones commonly considered by expert developers as the least relevant rules for
API design [11]. In addition to this, the rules in these categories account for less than 12% of the list.
Therefore, considering this, the scalability and replicability of UMEI are expected to not be strongly
affected by the low scores in these categories.

As mentioned above, developers value more the best practices related to an appropriate URI design,
a good use of HTTP request methods, good error handling, and a consistent representation design.
These categories account for 77% of the best practices considered in this analysis. For these
categories, as shown by Figure 15, the performance of the UMEI API is outstanding for the cases
considered, so developers should not find many inconveniences when implementing UMEI according
to its specification.

Regarding versioning, it was not considered by [11] in its survey. However, it can be considered a very
relevant category to assure the scalability and replicability of an API; an API with a versioning system
that follows the best practices will be easier to implement as it evolves. Results show that developers
using the UMEI in future implementations should not have any problems to understand the
functionality and usability of future versions of the API, given that all the best practices are followed
and, during implementations, it can be even improved by putting the version on the HTTP headers.
This sets a good basis for the replicability of the UMEI once the project finishes.

Despite the good performance of the UMEI regarding REST API design, it still has room for
improvement concerning the seamless integration of additional actors and widening the scope in

Page 38 of 39

terms of market processes covered. Regarding the former, the UMEI may present some limitations as
it relies on a given data model and format for the flexibility services that may not be universal.
Regarding the latter, it is relevant to point out that the UMEI, as it stands now, focuses exclusively on
the trading process, leaving out other relevant processes that could be integrated, such as the
registration of flexibility resources.

In order to address these limitations and facilitate replicability, future developments of the UMEI
could provide compatibility with other ontologies that are currently being developed in the smart grid
ecosystem. For example, one potentially relevant ontology is the Smart Applications REFerence
(SAREF) ontology, which is used for the description of the features and capabilities of smart devices
by different stakeholders (service providers, developers, manufacturers, etc.). In addition to this,
SAREF also provides compatibility with the oneM2M Base ontology, for Internet of Things (IoT)
devices. Although the description of these devices could get adapted to the UMEI, its additional
compatibility with SAREF would facilitate the registration and prequalification of smart devices and
their overall integration in the market processes where UMEI is implemented.

In general, the scalability and replicability of UMEI will be good, based on its expected good
understandability and reusability by developers, which are related to the application of most of the
best practices enumerated in the specialized literature on the topic. This good understandability and
reusability could be used to expand the UMEI, in a structured way, to provide compatibility with
standardized ontologies. This would facilitate the integration of new actors in the market processes
and further improve the scalability and replicability of the UMEI.

Page 39 of 39

7 References

[1] EUniversal, “Deliverable: D2.6 - UMEI API management and documentation,” 2022.

[2] C. Silva, D. Silva, G. Milzer, N. Sætre, Ø. D. Eide, P. Crucifix, L. Debroux, A. Debray, C. Dumont, G.
Marzano and M. Kaffash, “D2.5 UMEI prototype,” 2021.

[3] L. Fonseca, D. Silva, G. Milzer, N. Sætre, P. Crucifix, L. Debroux, N. Metivier and M. Kaffash, “D2.4
UMEI API functional specification of DSO Interface for standardized market platforms
Interaction,” 2021.

[4] EUniversal, “EUniversal D2.1 - Grid flexibility services definition,” 2021.

[5] ENTSO-E, “INTERRFACE Roadmap,” 2022.

[6] EUniversal, “ D7.4 - Portuguese Demonstrator ― Demonstration of the UMEI concept in the
management of market driven flexibility,” 2023.

[7] Wallarm, “What Is An API Authentication?,” 2023. [Online]. Available:
https://www.wallarm.com/what/what-is-an-api-authentication.

[8] S. Kotstein and J. Bogner, “Which RESTful API Design Rules Are Important and How Do They
Improve Software Quality? A Delphi Study with Industry Experts,” Communications in
Computer and Information Science, 2021.

[9] M. Stowe, Undisturbed REST: A guide to designing the perfect API, MuleSoft, 2015.

[10] EUniversal, “D10.4 - Scalability and Replicability analysis of the EUniversal solutions,” 2023.

[11] F. Petrillo, P. Merle, N. Moha and Y. G. Guéhéneuc, ““Are REST APIs for cloud computing well-
designed? An exploratory study,”,” in Springer Int. Publ, vol. 9936 LNCS, Springer Int. Publ, 2016,
p. 157–170.

[12] M. Masse, REST API Design Rulebook, O'Reilly Media, Inc, 2011.

[13] C. Rodriguez, M. Baez, D. Florian, F. Casati and J. Trabucco, REST APIs: A Large-Scale Analysis of
Compliance with Principles and Best Practices, Lecture Notes in Computer Science, 2016.

[14] L. Murphy, T. Alliyu, A. Macvean, M. B. Kery and B. A. Myers, “Preliminary Analysis of REST API
Style Guidelines,” PLATEAU’17 Workshop on Evaluation and Usability of Programming
Languages and Tools, p. 1–9, 2017.

